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Introduction
DNA sequence classification is of indispensable importance in understanding and iden-
tifying genetic differences among different species, thereby promoting the research and 
conservation of biodiversity. High-throughput sequencing technologies have generated 
vast amounts of genomic data. However, in metagenomic studies, many sequences are 
lost during contig assembly and binning, with only a small fraction being accurately 
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aligned and classified by existing tools. Effective DNA sequence classification requires 
high precision, recall, and computational efficiency. In addressing the challenges of 
sequence classification and analysis in metagenomic research, various tools and methods 
are widely developed, primarily including alignment-based methods [1, 2] and machine 
learning (ML) methods [3–5].

Early methods identify the taxonomic relationships among sequences by aligning 
unknown DNA sequences against references in database [6–9]. However, these methods 
are susceptible to the quality of the database [10]. On the one hand, existing databases 
cover only a fraction of known species, making it challenging to identify homologous 
sequences for many DNA sequences. On the other hand, alignment-based tools often 
exhibit low computational efficiency or recall rates [11, 12]. Therefore, ML are intro-
duced into DNA sequence classification for its capability of learning latent patterns from 
data without requiring references in database.

Considering the superior capability in complex pattern recognition of Deep Learn-
ing (DL) compared to ML [13, 14], DL methods are adopted more and more frequently 
for DNA sequence classification. These methods typically rely on DNA sequence rep-
resentations, e.g., k-mers [15], one-hot encoding [16, 17], and Word2Vec [18], as net-
work inputs. However, these representations either fail to preserve inherent structural 
information or are restricted to fixed-length sequences. In contrast, Frequency Chaos 
Game Representation (FCGR) enables handling sequences of arbitrary lengths by con-
structing frequency profiles that encapsulate statistical properties and patterns, offer-
ing a more effective DNA sequence representation. Current research [19–21] primarily 
employs convolutional neural networks (CNNs) to process FCGR. While CNNs encodes 
local information to learn image-specific patterns, they often neglect global information, 
which is crucial for understanding sequence characteristics and functionalities [22]. Due 
to their limited local receptive fields, CNN-based methods struggle to capture global 
dependencies and fully leverage FCGR’s potential features.

To comprehensively understand patterns in DNA sequences, the model should cap-
ture local and global information simultaneously. Transformer [23] is a neural network 
architecture based on the self-attention mechanism. It excels at efficiently process-
ing sequences and capturing interdependencies among positions within the sequence, 
thereby enhancing the modeling of long-range dependencies. In the domain of com-
puter vision (CV), to address limitations inherent in CNNs when processing images, 
Vision Transformer  (ViT) [24] is proposed to learn more generalized image features. 
Such enhancement augments the generalization capabilities of the model across diverse 
tasks and datasets, exhibiting superior performance on multiple benchmarks [25]. Ben-
efiting from the self-attention mechanism in ViT, each patch in the FCGR images is able 
to attend to patches of all other positions, enabling contextualized and richer represen-
tations of DNA patterns.

Although ViT outperforms CNNs in modeling global information, it requires more 
training data to achieve comparable generalization capacity due to fewer image-spe-
cific inductive biases [24]. In the fields of natural language processing (NLP) and CV, 
self-supervised pre-training is commonly employed to address the lack of data in the 
training of transformer and ViT. Specifically, numerous supervision signals are gener-
ated from large-scale unlabeled texts and images with tasks like Masked Language 
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Modeling  (MLM) [26] and Masked Autoencoder  (MAE) [27]. These pre-training 
methodologies diminish reliance on labeled data, and aid in the acquisition of more 
universal, generalized, and robust feature representations, thereby enhancing the per-
formance of the model. Limited annotated data in the area of DNA sequence clas-
sification hinders sufficient training of ViT. Inspired by self-supervised approaches in 
NLP and CV, we employ MAE to pre-train the ViT encoder, reducing its dependence 
on labeled data while learning robust FCGR features.

In summary, we propose a Pre-trained Contextualized Visual Representa-
tion  (PCVR) for DNA sequence classification. PCVR enhances DNA sequence rep-
resentations by capturing long-range dependencies and global context through a 
self-attention-based ViT encoder. To fully exploit the encoding capability of ViT 
and learn more robust feature representations, we employ MAE to pre-train the 
model. Specifically, DNA sequences are first converted into FCGR images. Then, we 
use MAE self-supervised pre-training, where randomly masked image patches are 
reconstructed by the model to learn semantic representations of FCGRs. Notably, 
no labeled data is required in the pre-training. Subsequently, we fine-tune the ViT 
encoder with a hierarchical classification head on labeled data, yielding a model capa-
ble of fine-grained classification of DNA sequences.

We evaluate PCVR on three datasets and observe that it outperforms existing meth-
ods across all of these datasets on superkingdom and phylum levels. In comparison to 
state-of-the-art methods, our model exhibits achieves statistically significant improve-
ments on datasets whose samples in the test set do not have identical genus samples in 
the reference database. To be specific, PCVR achieves a improvement of 5.93% at the 
superkingdom level and 8.96% at the phylum level on the distantly related dataset. It 
indicates outstanding generalization capabilities of our model, promising significant 
applications in the discovery of new species. On both closely related and final datasets, 
PCVR improves the macro average precision to over 98% and 96% at the superkingdom 
and phylum levels. These results highlight the exceptional capability of ViT in process-
ing global information and the ability of MAE pre-training to enhance the robustness of 
the features even across diverse domains. Ablation experiments on ViT and fine-tuning 
the head substantiates the rationality of combining FCGR representation with the visual 
encoder model. Prospectively, transforming DNA sequence information into FCGR can 
serve as a convincing DNA sequence embedding approach for DL models. The employ-
ment of self-supervised pre-training enables the adaptations to various downstream 
tasks, e.g., identification of promoters and enhancers.

To summarize, the main contributions of our work are as follows: 

1.	 It is the first approach to introduce ViT to extract contextualized visual representa-
tion of DNA sequence for classification, capturing global contextual information and 
long-range dependencies in genomic sequence.

2.	 We leverage MAE pre-training to fully exploit the representation potential of ViT 
architecture, effectively capture structural features and significantly enhance the 
robustness of the model.

3.	 Extensive experiments on multiple datasets demonstrate impressive performance of 
PCVR, indicating superiority of ViT and MAE pre-training in DNA sequence clas-
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sification. The effectiveness of key components in PCVR are also verified by our abla-
tion studies.

Background
DNA sequence classification

Traditionally, BLAST [6] employs a local alignment strategy to identify local similarities 
and search similar sequences in biological databases. MetaBat2 [9] leverage gene abun-
dance and other gene features to achieve classification and clustering on the microbial 
phylum level [28]. To improve computational efficiency, MMseq2 [7] divides the input 
sequences into different clusters and then performs a comparison within each cluster. 
MMseqs2 taxonomy [29] specializes in sequence classification and annotation and uses 
pre-trained classifiers to enhance its classification capabilities. Minimap2 [8] employs 
a split alignment strategy, utilizing a hash table storage structure and implementing 
dynamic programming algorithms for alignment. Nonetheless, the performance of these 
sequence alignment-based methods is susceptible to the data quality.

To overcome the reliance on data quality, researchers have shifted their focus toward 
ML. Earlier works employ ML methods such as support vector machines, decision trees, 
and random forests as classifiers [30, 31]. Rizzo et al. [19] represent DNA sequences as 
images using the FCGR for the first time. DeepMicrobes [32] process DNA sequences 
with one-hot encoding and k-mer embedding, and feed the embeddings into the deep 
neural network. The recently published method [33] enhances its predictive capabilities 
by balancing the feature data. Though these methods improve efficiency, they still fall 
short in predicting unseen sequences.

Pre‑training models

The paradigm of pre-training and fine-tuning marks a milestone in deep learning, boost-
ing the development of NLP and CV. Typically, they learn general features from large 
unlabeled datasets via unsupervised learning and then enhance performance by fine-
tuning on downstream tasks.

Text pre-training captures the intrinsic patterns of language by training models on a 
large scale of textual data. Early word embedding techniques such as Word2Vec [34] and 
GloVe [35] learn vector representations of words by predicting context. Elmo [36] model 
captures contextual information through a bidirectional LSTM [37] network. BERT [26] 
and GPT [38] introduce the transformer architecture and different pre-training tasks, 
significantly enhancing the model’s ability of language understanding and generation, 
respectively. In fields involving DNA sequences, BERTax [39] regards DNA sequences 
as natural language, utilizing BERT and adopting pre-training and fine-tuning to extract 
feature representations of DNA sequences for classification.

Image pre-training captures more subtle and complex visual patterns from large 
image datasets. ImageNet [40] provides a vast number of annotated images, facilitat-
ing the rapid development of deep learning in the field of image recognition. Subse-
quently, ResNet [41] uses deeper networks and introduces residual connections to solve 
the degradation problem. Moreover, ViT [24] processes images using self-attention 
mechanisms. MAE [27] self-supervised pre-training learns the representation of image 
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features by reconstructing partially masked images. These image pre-training techniques 
enhance the model’s perception of image features, but the application of image pre-
training techniques in DNA sequence classification tasks remains uncharted territory.

Methods
In this section, we elaborate on PCVR from three aspects: the representation of DNA 
sequence, the MAE pre-training and fine-tuning for taxonomic classification. In PCVR, 
DNA sequences are first embedded into FCGR and then converted to contextualized 
representations using a ViT encoder. To obtain a more robust representation, the ViT 
encoder is pre-trained with the MAE framework. Finally, we append a hierarchical clas-
sification head to the pre-trained ViT encoder and fine-tune the whole model to tackle 
the classification task. The detailed pipeline of DNA sequence classification using PCVR 
is illustrated in Fig. 1.

Representation of DNA sequence

DNA sequence embedding

When addressing tasks related to DNA sequences using DL models, we face chal-
lenges such as varying sequence lengths, excessively long sequences, or sequences that 
are too short. K-mer counting transforms sequences of varying lengths into vectors 
of dimension 4k , where k is a pre-defined value, but it also struggles to capture long-
range dependencies. Inspired by previous research [19–21], we consider utilizing FCGR 
to process DNA sequences. The main distinction between FCGR and k-mer counting 
encoding lies in the fact that FCGR maps the DNA sequence into a 2-d matrix using the 
CGR approach [42], capturing richer pattern and structural information compared to 
1-d k-mer counting and other commonly used 1-d encoding techniques [43, 44].

Fig. 1  The pipeline of DNA sequence classification using the proposed PCVR. This pipeline consists of two 
stages: the MAE pre-training stage for robust features and the fine-tuning stage for taxonomic classification. 
a The upper part of the pipeline illustrates the MAE self-supervised pre-training, which injects robust 
recognition abilities for images to the ViT encoder through reconstruction learning and obtains PCVR. b The 
lower part shows the fine-tuning stage, depicting the hierarchical feature fine-tuning structure upon the 
learned PCVR
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In CGR, each k-length nucleotide subsequence in the sequence is transformed into 
a point on a unit square image sequentially as illustrated in Fig. 2. The coordinate Pi 
for nucleotide si in the image depends on the coordinate Pi−1 for the previous nucleo-
tide si−1 [45]. Formally, the following steps are performed for each nucleotide si in the 
DNA sequence to obtain positions of all nucleotides in the sequence:

where PA , PT , PC and PG are coordinates of “A”, “T” “C” and “G”, instantiated as (0, 1), 
(1, 1), (0, 0) and (1, 0), respectively. P0 is defined as (0.5, 0.5), meaning that the coordi-
nate computation is started from the center of image. After that, CGR is quantized into 
an image with a resolution of 2k × 2k , where each pixel is shaded based on its frequency 
of related k-length nucleotide subsequence in the fragment. Up to this point, FCGR is 
obtained and the embedding of the DNA sequence is completed as depicted in Fig. 2.

Contextualized representation

After the DNA sequences are converted into FCGR embeddings, these embeddings 
are then utilized to extract discriminative patterns and reveal contextual sequence fea-
tures. ViT [24] is a simple yet powerful model that introduces transformer from the NLP 
domain to the computer vision domain. It is capable of learning global relationships 
within images and extracting features at multiple scales. FCGR encapsulates both global 
DNA sequence statistics and localized short k-mer patterns. Leveraging this property, 
ViT models contextualized sequence features effectively, forming the backbone of our 
PCVR framework. ViT comprises token embedding and encoding using the transformer 
encoder [23], which consists of a multi-head self-attention mechanism (MHSA) and a 
position-wise fully connected feed-forward network  (FFN). This approach effectively 
extracts generalized DNA sequence features, enabling robust downstream classification.

If si = “A”, then Pi =
1

2
(Pi−1 + PA);

If si = “T”, then Pi =
1

2
(Pi−1 + PT );

If si = “C”, then Pi =
1

2
(Pi−1 + PC);

If si = “G”, then Pi =
1

2
(Pi−1 + PG),

Fig. 2  DNA sequence FCGR embedding process of PCVR. For clarity, we present an example with k = 3 . Each 
k-mer in the DNA sequence is mapped to a grid position in CGR. The locating process of the first four k-mers 
is displayed using colored lines. The number of each k-mer that appears in a sequence is counted. Finally, 
these counts are converted into frequencies and each pixel in the FCGR is shaded according to its frequency
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Token embedding.   ViT uses patch embedding to vectorize each image by splitting it 
into patches and then treating each patch as a token. Once the tokens are obtained, a posi-
tion embedding is added to each token to provide the model with positional information, 
enabling it to understand the global structure and capture contextual information. With 
these embeddings, the transformer encoder module of ViT processes the input token 
sequence, converting it into a series of high-level abstract contextualized representations 
for downstream tasks such as taxonomic classification.

MHSA.  MHSA is one of the most critical components of the transformer. Self-attention 
allows each position in the input sequence to pay attention to information at others, thus 
enabling the modeling of the global context without introducing sequence order. The multi-
head mechanism in the attention mechanism allows the model to attend to information 
from multiple subspaces, enabling it to extract richer features and enhance the expressive 
and generalization capabilities of the model. In our context, self-attention and multi-head 
attention can be understood as a mechanism capturing relationships between individual 
short sequences and information about the sequential structure at different levels.

The self-attention mechanism first applies a linear transformation to the input tokens X 
using learnable weights WQ , WK , and WV  to obtain the query Q, key K, and value V. Then, 
the relevance scores between each query and all keys are computed by using dot product 
with a scaling factor 

√

dk  . Subsequently, these relevance scores are normalized via a soft-
max operation. A weighted summation is applied to values based on the relevance between 
each corresponding key and the query to yield the final attention output. The self-attention 
computational formula is illustrated as

where i is symbolic of the index of the i-th attention head. dk represents the vector 
dimension of each key which ensures the scaling operation appropriately adjusts the 
results of the dot product, mitigating issues such as gradient explosion and numerical 
instability. After getting individual attention heads, we concatenate all attention heads 
and perform a linear transformation with WO . Thus far, the output of the multi-head 
self-attention is acquired.

FFN.  The outputs of the MHSA layer are fed into an FFN layer after residual connections 
and layer normalization. The FFN consists of two simple fully connected layers, and ReLU 
activation is applied in the first layer. Through this process of dimensionality expansion fol-
lowed by dimensionality reduction, the model can combine various types of features and 
eliminate less discriminative feature combinations. This approach enhances the discrimina-
tion power of the model while removing redundant information. The FFN is computed as

MAE pre‑training

Masked autoencoders.   To obtain more universal and robust feature representa-
tions, we employ MAE [27] pre-training. MAE pre-training provides a robust train-
ing approach that equips the encoder to recognize intricate patterns and structural 

(1)Atti = Softmax

(

QiKi
T

√

dk

)

Vi,

(2)FFN(x) = ReLU(W1 · x + b1) ·W2 + b2.



Page 8 of 24Zhou et al. BMC Bioinformatics          (2025) 26:125 

information within images. MAE utilizes an asymmetric encoder-decoder structure, 
with ViT serving as both its encoder and decoder. It learns features through feature rec-
ognition and pixel reconstruction, denoted as encoding and decoding, respectively. In 
essence, MAE pre-training incorporates a masking mechanism akin to BERT [26] for 
unsupervised pre-training.

The masking strategy in MAE pre-training allows the model to learn intricate informa-
tion from images. During the encoding phase, MAE randomly masks a substantial num-
ber of patches, and in the decoding phase, it strategically leverages these masked patches 
for image reconstruction. In simpler terms, the encoder processes only a subset of vis-
ible image patches, whereas the decoder processes both the image patches output by 
the encoder and the patches that have been masked during encoding. This asymmetric 
structure reconstructs the complete image information by leveraging positional encod-
ing obtained during patch embedding.

This randomized masking strategy helps mitigate the risk of selected patches being 
distributed near the center of the image. Moreover, a high masking ratio effectively pre-
vents the model from easily inferring these masked blocks based solely on neighboring 
visible patches, prompting the model to learn higher-level and more intricate informa-
tion between image patches. Ultimately, this strategy results in sparse encoder inputs, 
as the encoder only processes visible image patches, leading to reduced computational 
costs and memory footprint.

Pre-training objective.   During the image reconstruction process in MAE pre-
training, Mean Squared Error is employed as the loss function, computed by summing 
squared differences between the original and the reconstructed pixels. Since information 
about unmasked pixel blocks is already known to the encoder and decoder as part of the 
input, the loss function is computed only for masked patches, akin to BERT. The training 
objective is designed to enable the model to identify specific patterns within the FCGR. 
This capability is essential for the encoder to distinguish sequences of different classes by 
encoding them with clear feature boundaries. Specifically, the training involves optimiz-
ing the encoder and decoder simultaneously to minimize the reconstruction error, thus 
enhancing the autoencoder’s effectiveness in reconstructing the input. This optimization 
is accomplished using gradient descent technique to iteratively refine the parameters, 
formulated as

Here, Encθ and Decφ denote the encoder and decoder, respectively. MI indicates the mask 
matrix applied to patches of image I. θ∗ is the parameter set of optimized encoder and 
will be used for subsequent fine-tuning. φ∗ is the parameter set of optimized decoder.

Fine‑tuning for taxonomic classification

Once the pre-trained model captures patterns within the dataset, the ViT encoder can 
serve as an extractor of image features for the subsequent classification task. We fine-
tune the pre-trained ViT with an additional multi-layer perceptron to adapt it to DNA 
sequence classification tasks.

(3)θ∗,φ∗ = arg min
θ ,φ

(I − Decφ(Encθ (I)))
2 ·MI .
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Hierarchical classification head.   For the fine-tuning head, we use lightweight net-
works. PCVR performs normalization on features output by ViT to obtain the global fea-
ture. Following this, PCVR employs the global feature as the classification feature at the 
superkingdom level and obtains the classification results of the superkingdom. As the 
difficulty of classification rises at lower taxonomic ranks, i.e., phylum and genus, more 
information is required compared to the superkingdom level. Hence, we have adopted 
a hierarchical fine-tuning structure to enhance the classification features of the phylum 
and genus. In this structure, the classification results of each level are combined with the 
global features generated by the encoder to obtain composite features, which are then 
fed into the linear layer at the lower rank as input. In this way, higher-level classification 
results can provide references for lower-level classifications, allowing the model to effec-
tively leverage label information from each level.

Fine-tuning objective.   By incorporating the category information of sequences and 
fine-tuning the pre-trained parameters with lightweight networks, the model, proficient 
in recognizing sequence features in FCGR, has transitioned its training focus towards 
classifying DNA sequences. To facilitate supervision throughout this process, we utilize 
cross entropy as the loss function for each taxonomic rank. To enhance optimization 
efficacy across various ranks, weights associated with the loss functions at distinct levels 
are adjusted accordingly. Ultimately, these weighted losses are aggregated to formulate 
the final fine-tuning loss function as follows:

where wr is the loss weight and Kr is the class number of the r-th taxonomic rank. yrk and 
ŷrk denote the label and predicted probability of the k-th class in the r-th taxonomic rank, 
respectively.

Experiments
Implementation details

We implement the whole PCVR with PyTorch [46]. We choose the 5-mer FCGR as 
the input for our model with a patch size of 4 for the images. The encoder of our large 
model has an embedding dimension of 1024, comprising 24 transformer layers with 16 
attention heads. The base model has an encoder embedding dimension of 768, with 12 
transformer layers and 12 attention heads. The embedding dimension of the decoder is 
512, featuring 8 transformer layers and 16 attention heads. During fine-tuning, we uti-
lize layer normalization for global pooling of the features obtained from the encoder to 
derive the global feature. In the pre-training phase, we employ a batch size of 256 and 
utilize the AdamW optimizer [47] for both the pre-training and fine-tuning of PCVR. 
The base learning rate is set to 0.0001, and the learning rate undergoes a warm-up 
phase of 40 epochs. Following the warm-up, the learning rate decays with a half-cycle 
cosine schedule until the completion of the remaining epochs. The reported results of 
the large model correspond to the pre-trained model obtained from the checkpoint 
at the 520th epoch. The results for the base model are derived from the 540th epoch, 
with loss weights for the three levels set at 2:3:5. Except for the final result presentation, 

(4)Loss =

3
∑

r=1

wr ·

Kr
∑

k=1

yrk log ŷ
r
k ,
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all experiments in this work are conducted using a balanced loss ratio of 1:1:1. For the 
distillation, we use KL divergence to align the logits distribution, with temperature 
coefficients of {2, 3, 4} and weights of {0.4, 0.4, 0.2} across three taxonomic ranks, and 
cross-entropy loss to supervise the labels. All models are trained on 8 NVIDIA GeForce 
RTX 3090 GPUs.

Evaluation metrics

To evaluate the performance of our model, we follow BERTax [39] and use macro aver-
age precision (macro AveP) as our primary evaluation metric. Macro AveP reflects the 
performance of the model on the dataset as a whole without focusing on the perfor-
mance of a specific category. The macro AveP is computed using

where Pi denotes the precision of the i-th class.
In cases of imbalanced class distribution, the macro AveP may be substantially influ-

enced. Therefore, we additionally employ micro average precision (micro AveP) as a sup-
plementary evaluation metric in some comparisons which is not sensitive to imbalanced 
data. We compute micro AveP as

where wi signifies the class weight for class i, determined by the proportion of the quan-
tity of this class in the dataset.

To provide a more comprehensive evaluation of our model, we also present classifica-
tion accuracy (Acc), the micro-averaged Area Under the ROC Curve (AUC), which are 
metrics commonly used in classification tasks. Acc, the most intuitive evaluation met-
ric in classification tasks, represents the proportion of correctly predicted samples out 
of the total samples. AUC provides insights into the model’s classification ability across 
various thresholds, facilitating a more balanced assessment of the model’s performance. 
Given the limitations of traditional alignment-based methods that classify only a subset 
of the data, we use the proportion of the predicted samples for the method (Prop) to 
assess DNA sequence classification models’ ability to handle all available data.

Benchmark dataset

We use the data provided by the developers of BERTax [39] for our study whose num-
ber of categories and samples in each dataset are shown in Table  1. For pre-training, 
the dataset comprises 2,492,474 DNA sequences with a fixed length of 1,500 nucleo-
tides from the four superkingdoms, Eukaryotes, Bacteria, Archaea, and Viruses. Note 
that only these sequences are used and no class label is provided for pre-training. For 
fine-tuning, to show the generalization ability of the model when the test set includes 
unknown sequences, datasets are selected and formed: closely related dataset and dis-
tantly related dataset [39]. For the closely related dataset, a fixed number of samples are 

(5)macro AveP =
1

n

n
∑

i=0

Pi,

(6)micro AveP =

∑C
i=0 wi · TPi

∑C
i=0 wi · (TPi + FPi)

,
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randomly selected from each phylum as the test set, with the remaining data used as 
the training set. For the distantly related dataset, one or more entire genera samples are 
selected as the test set from each phylum. It is ensured that there is no overlap between 
the genera in the test set and the training set on the genus level. Essentially, the distantly 
related dataset reflects the zero-shot ability of the model for genus-level predictions, 
akin to its discrimination ability for species in new genera. The discrepancy between the 
training and test data makes the classification task more challenging on this dataset, so 
we regard it as a measure of the generalization ability of the model when dealing with 
data less related to the training set. For the final dataset, the redundancy after clustering 
is very low in eukaryotes and bacteria. To obtain a dataset that covers as much genomic 
diversity as possible, 2 million additional sequences are incorporated into these two 
superkingdoms following the settings in [39]. After that, clustering is performed again 
based on sequence similarity and the final dataset is constructed.

Comparison with existing baseline models

We implement two models, a base PCVR model and a large PCVR model. In Table 2, we 
compare the two models’ performance of macro AveP on all three datasets with previ-
ous methods MMseqs2, MMseqs2 taxonomy, minimap2, DeepMicrobes, BERTax, and 
feature space balancing approach. In Table 2, where the best performance is highlighted 
in bold, the performance values for state-of-the-art methods are taken from [33, 39] and 
the results on the closely related dataset of Subspace KNN and Bagged decision trees are 
not presented for not released in their original paper.

On the closely related dataset, our large model exhibits notable enhancements, with 
the macro AveP improving from 95.65% to 98.87% on the superkingdom level and from 
83.88% to 96.32% on the phylum level when compared with BERTax. For the distantly 

Table 1  Statistics of datasets

Dataset Supk. Phyl. Genus Training data Test data

Closely related dataset 4 30 146 2,268,584 60,000

Distantly related dataset 4 30 146 2,245,416 53,400

Final dataset 4 44 156 5,311,920 88,000

Table 2  Comparison with existing baseline models of the macro AveP on all three datasets

Method Closely related Distantly related Final

Supk. Phyl. Supk. Phyl. Supk. Phyl. Genus

MMseqs2 [7] 92.19 85.66 62.76 41.36 96.94 92.90 74.76

MMseqs2 tax. [29] 94.33 86.56 67.47 43.44 98.11 93.47 75.09

minimap2 [8] 86.12 76.06 44.12 20.03 93.46 86.71 66.68

DeepMicrobes [32] 97.18 86.62 67.25 36.61 98.13 92.11 66.43

BERTax [39] 95.65 83.88 90.06 54.10 98.62 95.10 66.92

Subspace KNN [33] - - 88.03 65.77 99.07 95.53 86.43
Bagged decision trees [33] - - 81.64 69.71 92.51 85.17 76.10

PCVR-Base 98.40 95.40 94.59 75.08 98.97 96.29 74.65

PCVR-Large 98.87 96.32 96.00 78.67 99.22 96.93 74.51
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related dataset, PCVR achieves 6.0% and 9.95% superior macro AveP on the superk-
ingdom and phylum level to the subspace KNN model. In the case of the final dataset, 
higher macro AveP values are obtained for a larger dataset compared to the closely 
related dataset. There is an increase from 99.07% to 99.22% on the superkingdom level 
and from 95.53% to 96.93% on the phylum level. On the genus level, although optimal 
performance is not reached, PCVR-Base still outperforms BERTax by 7.73%.

On the superkingdom and phylum levels, our model showcases excellent performance, 
indicative of its adeptness in capturing complex patterns within sequences. It effectively 
leverages the feature of the ViT encoder to achieve nuanced differentiation at these hier-
archical levels. As a result, even when faced with substantial disparities between testing 
and training data categories on the distantly related dataset, our model exhibits com-
mendable classification capabilities. We ascribe this outstanding performance to the 
robust representation capabilities of FCGR and the strong pre-training ability of MAE. 
For genus level, the approach incorporating feature space balancing [33] achieves the 
best performance at 86.43%, while PCVR-Base achieves a comparable performance of 
74.65% to MMseqs2. Our model, alongside MMseqs2 and DeepMicrobes, relies on k-
mer counts, in whose feature space certain regions are densely populated while others 
remain sparsely occupied. The implementation of balanced features effectively addresses 
the challenge posed by the presence of numerous imbalanced genus classes in the final 
dataset. Additionally, algorithms such as KNN and decision trees are more sensitive to 
imbalanced data and tend to perform better when handling such data. The evaluation 
results on micro AveP are presented in Table 3. The results of the Subspace KNN and 
Bagged Decision Trees methods are not included because they are not released. Despite 
the macro AveP of PCVR-Large being only 74.51% on the genus level, the micro AveP 
reaches 95.01%. Given this phenomenon, we believe that the imbalanced data causes the 
bad performance on the genus level.

To comprehensively evaluate our method, we incorporate classification accuracy 
(Acc), the micro-averaged Area Under the ROC Curve (AUC), and the proportion of 
the predicted sample of the method (Prop) as additional metrics. As shown in Table 4, 
PCVR surpasses other DL-based methods and achieves comparable Acc to alignment-
based approaches. PCVR also demonstrates superior robustness as evidenced by its high 
AUC, indicating that excellent performance can be attained without complex parame-
ter tuning. Alignment-based methods suffer from strict alignment criteria that prevent 

Table 3  Performance comparison in terms of weighted micro AveP

Method Closely related Distantly related Final

Supk. Phyl. Supk. Phyl. Supk. Phyl. Genus

MMseqs2 91.71 85.72 62.24 41.46 96.57 92.94 75.44

MMseqs2 tax. 93.99 86.69 67.69 43.62 97.89 93.55 75.86

minimap2 85.00 76.01 42.67 19.88 92.61 86.68 66.26

DeepMicrobes 97.14 87.18 67.47 35.80 98.15 92.38 73.45

BERTax 95.68 84.46 89.91 54.21 98.66 95.20 73.82

PCVR-Base 98.67 95.08 95.88 69.37 98.94 96.29 94.93

PCVR-Large 99.05 96.09 96.83 74.69 99.22 96.64 97.37
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classification of samples lacking reference sequences, which results in only a small frac-
tion of input samples being successfully categorized. In contrast, PCVR overcomes this 
fundamental constraint by comparing sequence similarity patterns rather than relying 
on direct sequence alignment, thereby addressing the low classification coverage issue.

To verify the significance of our experimental results, we conduct statistical analysis on 
the results of these datasets. We use the one-sided Wilcoxon signed-rank test to assess 
the performance improvement. We set the significance threshold to α = 0.05 and apply 
Benjamini-Hochberg correction to mitigate errors from multiple comparisons. The per-
formance difference magnitude is measured using Cohen’s d. As shown in Table 5, the 
improvement of PCVR-Base in macro AveP is statistically significant compared to five 
baseline models, with median diff greater than 4.07% and Cohen’s d effect sizes greater 
than 0.5. Similarly, PCVR-Large also demonstrates statistically significant performance 
improvements. These tests indicate that the performance enhancements of our model 
are not only statistically but also practically significant.

Assessment and comparison of encoder

We select BERTax as our primary baseline considering its similar training methodology 
with our approach. As shown in Table 2, PCVR outperforms BERTax across all datasets. 

Table 4  Performance comparison of Acc, AUC, and Prop on closely and distantly related datasets

Method Closely related Distantly related

Supk. Phyl. Supk. Phyl.

Acc AUC​ Prop Acc AUC​ Prop Acc AUC​ Prop Acc AUC​ Prop

MMseqs2 99.63 0.94 87.45 97.30 0.93 87.45 90.73 0.75 52.78 75.04 0.71 52.78

MMseqs2 tax. 98.06 0.96 92.62 92.62 0.93 92.69 80.50 0.79 71.37 59.19 0.73 71.37

minimap2 99.95 0.90 75.59 99.55 0.88 75.59 94.42 0.62 19.88 77.12 0.59 19.88

DeepMicrobes 96.68 0.98 100 87.72 0.94 100 68.39 0.81 100 41.95 0.70 100

BERTax 94.78 0.97 100 85.55 0.93 100 88.95 0.94 100 60.10 0.80 100

PCVR-Base 98.57 0.99 100 95.08 0.99 100 95.31 0.99 100 69.38 0.95 100

PCVR-Large 98.99 0.99 100 96.09 0.99 100 96.48 0.98 100 74.69 0.92 100

Table 5  Results of the one-sided Wilcoxon signed-rank test

Method pair Median diff Cohen’s d P-value Corrected 
p-value

Significant

PCVR-Base vs. MMseqs2 6.21 0.77 0.016 0.016 �

PCVR-Base vs. MMseqs2 tax. 4.07 0.68 0.016 0.016 �

PCVR-Base vs. minimap2 12.28 1.13 0.008 0.013 �

PCVR-Base vs. DeepMicrobes 8.22 0.72 0.008 0.013 �

PCVR-Base vs. BERTax 4.53 0.50 0.008 0.013 �

PCVR-Large vs. MMseqs2 6.68 0.84 0.016 0.016 �

PCVR-Large vs. MMseqs2 tax. 4.54 0.75 0.016 0.016 �

PCVR-Large vs. minimap2 12.75 1.18 0.008 0.016 �

PCVR-Large vs. DeepMicrobes 8.08 0.79 0.008 0.016 �

PCVR-Large vs. BERTax 5.94 0.58 0.008 0.016 �

PCVR-Large vs. PCVR-Base 0.64 0.10 0.016 0.016 �
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Notably, PCVR demonstrates significant improvement at lower taxonomic ranks. We 
attribute this performance to the robustness conferred by MAE self-supervised pre-
training and the potent capacity of ViT to capture contextual information of features. 
The combination of ViT and MAE pre-training allows the encoded features to possess 
a more distinctive signature of FCGR. Moreover, compared to the use of 3-mer tokens 
as representations of DNA sequences in BERTax, FCGR makes features from different 
spices exhibit greater distinctiveness.

To further assess the DNA sequence representation quality under the combination 
of FCGR and MAE pre-training, we empirically investigate the recognition capabili-
ties acquired by the ViT encoder during the pre-training phase. We propose a feature 
retrieval method for classification based on cosine similarity ranking. Specifically, the 
category assignments for DNA sequences are determined by identifying the data catego-
ries in the database with the highest cosine similarity to the sequence. The framework is 
depicted in Fig. 3.

For the retrieval data, we employ the training set data as the database, and the test 
set data serves as the query. Firstly, all the data is encoded into latent features by the 
encoder. We then compute the similarity between each query and the data in the data-
base, and sort the results based on cosine similarity. Such classification without category 
information supervision directly reflects the quality of features encoded by the encoder 
and the representation ability of DNA sequences in different embedding approaches. 
As BERTax also adopts a combination of self-supervised pre-training and fine-tuning, 
we employ the same strategy to evaluate the representation of DNA sequences of BER-
Tax. To ensure a fair comparison, we utilize the encoder in PCVR-Base. We do not 
perform feature retrieval on fine-tuned BERTax on the distantly related dataset as its 
model weights are not publicly available, and other results of feature retrieval are shown 
in Table  6. From the results, we found that after pre-training, our encoder exhibits 

Table 6  Comparison of the macro AveP with feature retrieval on distantly related and final dataset

Method Dist. related Final

Supk. Phyl. Supk. Phyl. Genus

BERTax w/o fine-tuning 87.88 35.90 87.88 46.96 13.76

BERTax w/ fine-tuning - - 98.63 95.48 63.62

Ours w/o fine-tuning 81.14 54.10 90.73 80.53 37.25

Ours w/ fine-tuning 90.57 72.21 98.97 96.16 63.89

Fig. 3  Framework of feature retrieval
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significantly stronger abstraction capabilities on lower taxonomic ranks compared to 
BERTax. Interestingly, without fine-tuning, PCVR-Base demonstrates superior perfor-
mance across all datasets except on the superkingdom level of the distantly related data-
set. It is evident that after fine-tuning with category information, the performance has 
seen a substantial improvement from 80.53% to 96.16% on the phylum level and from 
37.25% to 63.89% on the genus level.

In order to visually depict the encoding quality of features, we visualize the high-
dimensional latent abstract feature data. We select one-fourth of the phylum classes 
from the test set of the final dataset and map the latent features onto a two-dimensional 
space using the T-SNE [48] tool. As depicted in Fig. 4, even without category informa-
tion before fine-tuning, PCVR-Base successfully encodes features with clearer category 
boundaries in the two-dimensional space compared to BERTax. After fine-tuning, the 
features of each category can be largely separated in feature space, revealing the ability 
to learn distinct features for each category.

Assessment of hierarchical classification

To make sure our fine-tuned layers are integrated in a proper way, we assess the input 
of the classifier on each taxonomic level as Table 7, where the best performance in each 
column is shown in bold. We employ the strategy for the evaluation of the encoder. We 
extract the features before each fully connected layer  (FC), named Supk. layer, Phyl. 
layer, and Genus layer, respectively, and conduct feature retrieval depicted in Sect. 4.5 on 
each taxonomic level.

We expect that incorporating information from higher taxonomic levels would posi-
tively impact predictions at lower levels. However, these results suggest that predictions 
at the phylum level are minimally influenced by the inclusion of superkingdom outputs. 

Fig. 4  Visualization of the clustered latent features of PCVR-Base and BERTax via T-SNE. We display PCVR’s and 
BERTax’s features before and after fine-tuning. Points of different colors represent different phylum categories, 
where greater spatial distances between points indicate lower similarity between features

Table 7  Macro AveP of feature retrieval in three layers

FC layer Closely related Dist. related Final

Supk. Phyl. Genus Supk. Phyl. Genus Supk. Phyl. Genus

Supk. Layer 98.78 96.07 63.50 90.57 72.21 18.80 98.98 96.16 63.89

Phyl. Layer 98.71 96.06 62.79 98.71 96.06 62.79 98.90 96.25 63.42

Genus Layer 98.68 96.37 65.72 98.68 96.37 65.72 99.17 96.90 67.77
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This is primarily due to the small dimension (5-d) of the superkingdom output compared 
to the encoder features. Regarding predictions at the genus level, integrating features 
from phylum outputs led to improvements on both closely related and final datasets, 
resulting in a nearly 3% increase in macro AveP. Notably, the distantly related dataset 
does not follow this pattern. This deviation can be attributed to the absence of genus 
categories in the training set of the distantly related dataset, which are present in the 
test data. Therefore, these anomalous results align with our expectations. Overall, these 
observations suggest that the design of our fine-tuning network is reasonable.

Ablation study

To investigate how different components of PCVR contribute to its performance, we 
conduct ablation studies on the pre-trained model settings, FCGR size, fine-tuning 
structure, and loss weights. We also investigate lighter models by using distillation 
with smaller models as student models. Furthermore, we explore the impact of training 
data volume. Due to limitations in computational resources, we opt for ablation studies 
using the ViT-Base as the encoder. By default, our base model configuration includes 
a decoder width of 512, a depth of 8, a mask ratio of 75%, and follows the fine-tuning 
structure depicted in the framework diagram. The loss weights are evenly distributed at 
a ratio of 1:1:1 by default.

Impact of pre-training.   We train ViT using various ViT initialization strategies as 
shown in Table  8. We employ randomly initialized ViT and ImageNet [40] initialized 
ViT for fine-tuning for taxonomic classification. These two model initialization strate-
gies both exacerbate the complexity of the training process. Additionally, we simulate 
random classification using randomly generated numbers, represented as the “Random” 
case. These suboptimal outcomes show that MAE provides a better initial state for the 
fine-tuning of ViT, making the model converge to superior performance more quickly. 
By contrast, it is hard for the randomly initialized ViT and ImageNet pre-trained ViT to 
attain optimization within an equivalent number of training epochs. These results sug-
gest that initializing ViT with MAE pre-training is the most appropriate apt. It also cor-
roborates the conclusion that MAE pre-training endows ViT with more robust feature 
representations.

Impact of MAE pre-train settings.   In order to verify the effectiveness of model 
settings of MAE pre-training, we conduct ablation experiments focusing on the 
masking ratio, decoder layers, and embedding dimensions of the decoder. Our base 
model uses a masking ratio of 75%, a decoder with 8 blocks, and a width of 512-d. 

Table 8  The impact of encoder initialization on distantly related and final datasets

Initialization Dist. related Final

Supk. Phyl. Supk. Phyl. Genus

MAE pre-train initialized 94.59 75.08 98.97 96.29 74.65

Randomly initialized 6.67 0.11 2.27 0.05 0.00

ImageNet initialized 12.38 0.30 23.80 5.21 2.33

Random 24.98 3.31 24.98 2.27 0.64
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From the visualized results shown in Fig. 5, we observe improvement on the distantly 
related dataset when the encoder width is set to 256. In our task, a significant dif-
ference in encoding dimensions between the encoder and decoder may have adverse 
effects. Apart from the impact of decoder width, the effects of other decoder settings 
are marginal. This is because the encoder focuses on pattern recognition, and the 
decoder is primarily involved in reconstruction. During fine-tuning for classification, 
we mainly utilize the recognition capabilities of the encoder. The results also align 
with the previous findings in MAE.

Impact of k-mer size.   To ascertain the optimal image size for FCGR, we propor-
tionally adjust several parameters to segment images with sizes of 32× 32 , 64 × 64 , 
and 128× 128 into 64 patches. The respective patch sizes are calculated to be 2, 4, 
and 8 for each image size. The model performs worst when k is set to 4 as shown in 
Table 9. Though the 6-mer FCGR achieves superior performance on the final dataset, 
its efficacy diminishes on distantly related datasets compared to the 5-mer FCGR. As 
of our current understanding, each sequence tends to have more similar sequences in 
the final dataset after incorporating additional eukaryotic and bacterial sequences as 
mentioned in Sect.  4.3. Thus, discriminating sequences in the final dataset requires 
more distinguishing features. In line with the observation of our results, 6-mer sur-
passes others on the final dataset, implying that larger k-mers incorporate higher-
order sequence information and act as a better input for our model. Considering the 
overall performance across all datasets, we opt for the 5-mer FCGR as the preferred 
input for our model.

Impact of fine-tuning architecture design.   To validate the effectiveness of the 
hierarchical fine-tuning head we adopt, we design four additional fine-tuning struc-
tures for comparison. Firstly, we design a variation using the output of an additional 
“CLS” token as the input of the fine-tuning head to explore the impact of global 

Fig. 5  Comparison of various decoder settings in terms of macro AveP on all three datasets. The results are 
presented from top to bottom, corresponding to closely related, distantly related, and the final dataset

Table 9  Ablation study of k-mer in FCGR on distantly related and final datasets

Settings Dist. related Final

k patch size Supk. Phyl. Supk. Phyl. Genus

6 8 89.76 73.02 99.02 96.45 75.45

5 4 92.81 73.09 98.96 96.36 73.51

4 2 89.30 68.76 98.44 94.92 70.01
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pooling, denoted as “CLS pooling”. To verify the effectiveness of hierarchical struc-
ture, we substitute the hierarchical head with an FC. Furthermore, we design two var-
iations named “shared encoder + FC” and “individual encoder + FC” to investigate 
the impact of sharing encoder parameters. Besides, we observe that many samples 
belong to “unknown” genus in the final dataset. We try an “unknown” branch to deter-
mine whether a sequence belongs to the “unknown” before the classification for genus 
rank to diminish the negative implications for prediction, denoted as “w/ unknown 
branch”. Note that the loss function only calculates the loss for genera that do not 
belong to the “unknown” genus in “w/ unknown branch”. “hierarchical” denotes the 
fine-tuning structure we ultimately adopt.

Results in Table 10 suggest that the model performs better when global pooling is 
used for fine-tuning, as opposed to solely using the “CLS” token output by ViT. More-
over, it is difficult to conclude whether sharing ViT parameters is better. Considering 
the memory, we opt to share ViT parameters. Out of our expectation, the “unknown” 
branch does not work. A possible explanation is that numerous other imbalanced 
genera affect the prediction of classifiers. Comparison between “shared encoder + 
FC” and “hierarchical” reveals that our hierarchical head is capable of providing more 
complex pattern representations.

Impact of loss weights.  Further experiments are conducted to explore the impact 
of weights of classification losses for various taxonomic levels during model fine-
tuning. We configure the loss weight ratios for superkingdom, phylum, and genus as 
1:3:6, 2:3:5, 3:3:3, and 3:3:4, as depicted in Fig. 6. Notably, when the loss weight ratio 
is set to 2:3:5, the model demonstrates an enhancement compared to the 3:3:3 con-
figuration, indicating improved optimization of individual loss components at that 
particular ratio.

Impact of model reduction.   We explore the performance of smaller models by 
applying distillation. We use ViT-Small and ViT-Tiny as the student model backbone 
and the fine-tuned PCVR-Base as the teacher model in our distillation. As shown in 
Table  11, distillation endows smaller models with capabilities, but it is challenging 
to achieve the performance of the teacher model. To further explore the potential of 
smaller models, we retrain them using the same methodology as PCVR, obtaining 
performance that surpasses that of distillation. Nonetheless, smaller models still fail 
to achieve the comparable performance of PCVR-Base. It suggests that larger models 
are more capable of leveraging the full potential of PCVR, whereas smaller models 
should only be considered under limited computation resources.

Table 10  Results with different fine-tuning structural designs

Fine-tuning structure Dist. related Final

Supk. Phyl. Supk. Phyl. Genus

CLS pooling 91.24 72.03 98.90 96.13 73.92

shared encoder + FC 92.30 72.18 97.79 96.37 71.16

individual encoder + FC 88.80 72.46 98.52 94.96 72.25

w/ unknown branch - - 98.85 96.01 52.16

hierarchical 92.81 73.09 98.96 96.36 73.51
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Impact of data reduction.   We investigate the impact of training data volume on 
PCVR-Base’s performance. We set the pre-training data to 50% and 25% of its original 
volume with fine-tuning data to 100%, 50%, and 25% of its original volume. The results 
in Table 12 indicate that a 50% reduction in pre-training data achieves similar perfor-
mance on the final dataset compared to the full 100% pre-training dataset. However, the 
model’s performance on distantly related dataset declines noticeably. Considering the 
substantial difference between the training and test data in the distantly related dataset, 
we safely draw the conclusion that pre-training of PCVR is more advantageous in terms 
of generalization ability than barely training on specific downstream tasks. When pre-
training data is reduced to 25% of the original volume, the model fails to train on all fine-
tuning settings, further illustrating the vital role of pre-training.

Fig. 6  Impact of weighting proportions on classification losses during fine-tuning. The horizontal axis 
represents the weights of the loss function for superkingdom-phylum-genus

Table 11  Results with different model reduction strategy

Method Param.(M) Dist. related Final

Supk. Phyl. Supk. Phyl. Genus

PCVR-Large 302.62 96.00 78.67 99.22 96.93 74.51

PCVR-Base 85.29 94.59 75.08 98.97 96.29 74.65

PCVR-Small 21.41 89.00 66.38 98.73 95.71 72.29

PCVR Base-to-Small distiilation 21.41 81.35 64.03 97.79 93.28 64.98

PCVR-Tiny 5.4 88.09 69.15 98.48 95.14 70.63

PCVR Base-to-Tiny distillation 5.4 80.80 60.62 96.74 91.44 60.09

Table 12  Results with different data reduction

Pre-training dataset 
proportion

Fine-tuning dataset 
proportion

Dist. related Final

Supk. Phyl. Supk. Phyl. Genus

100% 100% 94.59 75.08 98.97 96.29 74.65

50% 100% 88.59 68.35 98.92 96.07 73.75

50% 50% 89.31 68.90 98.52 95.21 71.37

50% 25% 89.10 66.27 98.10 94.23 68.35

25% 100% 6.67 0.11 8.08 0.05 0.35

25% 50% 6.67 0.11 8.08 0.05 0.35

25% 25% 6.67 0.11 8.08 0.05 0.35
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Case study

As the confusion matrices in Fig. 7 show, our model achieves accurate classification 
across most phylum categories, but still exhibits lower performance in some other 
categories. To provide a more intuitive representation of our results, we select sev-
eral categories for visualization. Figure  8 illustrates FCGR images of true positive, 
false negative, true negative and false positive samples. These cases reveal similar pat-
terns between true and false positives, as well as analogous trends between true and 
false negatives. Both phenomena indicate that PCVR tends to predict the category of 
DNA sequences according to the discriminative patterns in their FCGR images. For 
instance, the second line of Fig. 8 shows that sequences with cross-shaped FCGR pat-
terns are consistently classified as “Streptophyta”, whereas those lacking this feature 

Fig. 7  Confusion matrices of PCVR-Large for the rank phylum of the distantly related and final dataset. The 
values of each row are percentages of the true positive number of samples from the respective taxonomic 
class

Fig. 8  FCGR images of true positive, false negative, true negative and false positive samples. True classes of 
DNA sequences are annotated right above their FCGR images. A → B indicates that the sample with true class 
A and is predicted as class B by PCVR
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are assigned to “Arthropoda”. However, similar patterns may exist across different 
categories, like the “Planctomycetes” and “Proteobacteria” in the fourth line of Fig. 8, 
which would hinder the classification accuracy of PCVR. Thus, while the model per-
forms well in distinguishing sequences with distinct patterns, sequences exhibiting 
cross-category pattern similarity are prone to misclassification.

Discussion
In our study, we propose PCVR, a generalized and robust alignment-free model combin-
ing ViT and MAE self-supervised pre-training on FCGR. PCVR outperforms the state-
of-the-art models on superkingdom and phylum levels, especially in scenarios where 
a gap exists between the testing and training data. By using FCGR as DNA sequence 
representation, PCVR diminishes the model’s reliance on data length and quality. By 
enhancing the recognition capabilities of ViT via MAE pre-training, ViT captures high-
level abstract features in FCGR, revealing both local and global structural information 
within DNA sequences. After incorporating downstream sequence category informa-
tion, it acquires a deeper understanding of DNA sequence structural patterns from hier-
archical fine-tuning.

PCVR achieves the best performance on classification on the superkingdom and phy-
lum levels across all three datasets. It is worth noting that, PCVR achieves the most sig-
nificant improvement on the distantly related dataset, where lower similarity between 
test and training data. It indicates that it effectively learns the patterns of DNA sequences 
and holds promising practical applications. This also demonstrates the potential for the 
generalization and flexibility of pre-trained ViT across a wider range of downstream 
tasks on DNA sequences. However, on the genus level, PCVR achieves commendable 
performance compared to many methods, albeit not the best. We attribute such results 
to the class imbalance in the data, which increases the difficulty of model learning. We 
also conduct ablation experiments on FCGR, ViT, and fine-tuning structures. These 
results indicate that PCVR architecture achieves good performance across multiple set-
ting combinations, showing its robustness.

In comparison with BERTax, the combination of FCGR+MAE surpasses the per-
formance of the tokenizer+BERT. It substantiates that methodologies predicated on 
FCGR representations achieve superior performance when augmented with sophisti-
cated image encoders and commendable training strategies. We posit that treating DNA 
sequence classification as an FCGR image classification problem may be more appropri-
ate than regarding it as a language task. Thus, we consider PCVR a successful attempt 
to apply computer vision techniques to address DNA sequence problems. Moreover, we 
believe FCGR will be preferable for representing DNA sequences in future research. We 
also reckon MAE pre-training is a powerful tool for other biological image tasks.

In case study, we visualize FCGR images of several samples, finding that PCVR pre-
dicts the category of DNA sequences mainly according to the visual patterns in their 
FCGR. However, we also observe the intra-class diversity and the inter-class similarity of 
sequence patterns, which may lead to some samples being misclassified. Based on these 
phenomena, we propose that in practical applications, if the pattern features between 
classes are clearly distinguished, our model can effectively extract key sequence features 
and demonstrate strong classification capabilities. For instance, confronting certain 
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genetic diseases or cancers, where specific mutation sites in disease-associated genes are 
highly conserved across affected individuals, PCVR would exhibit significantly accurate 
classification due to the variability of conserved mutations. Similarly, in viral classifica-
tion and origin-tracing tasks, highly species-specific sequence regions provide strong 
discriminative signals, enabling the model to differentiate between viral species. Further-
more, specific functional genes, e.g., transcription factors binding site, promoter, often 
have structurally conserved sequence patterns. The conserved patterns provide intuitive 
feature bases for the classifier to effectively identify and classify DNA sequences. We will 
apply our method to these real-world scenarios in the future.

Limitations   While PCVR demonstrates promising results in DNA taxonomy classi-
fication, there are still some limitations. Similar to most of deep learning approaches, 
the prediction accuracy of PCVR may be influenced by unbalanced distribution of 
fine-tuning data, e.g., the genus rank in our dataset. Besides, the better DNA sequence 
representation of PCVR is built upon extra pre-training, whose performance would 
be discounted if the computation resources are limited. Therefore, we anticipate more 
applications of advanced computer vision frameworks for data balancing and computa-
tion reduction to improve existing models in the future. Furthermore, some sequential 
information is inevitably lost using FCGR since it mainly extracts frequency information 
of DNA sequences. We will consider integrating multiple encoding strategies to leverage 
their respective strengths and overcome the information loss in our future work.

Conclusions
We propose a framework named PCVR for DNA sequence classification. To the best 
of our knowledge, PCVR is the first model that introduces the ViT to DNA sequence 
classification and obtains contextualized representations of DNA sequence by MAE pre-
training. PCVR optimizes the modeling of long-range dependencies and global infor-
mation in DNA sequences. Experimental results show that PCVR achieves superior 
performance across multiple datasets, significantly improving DNA sequence classifica-
tion accuracy at the superkingdom and phylum levels. Overall, the generalization and 
robustness of the PCVR establish a promising approach for discovering new species and 
broad applicability to various genomic tasks.
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