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FIG 3 Ifenprodil and flavopiridol alleviated H5N1-induced cytokine storm in mouse lungs. (A and B) Heat maps of relative cytokine
mRNA levels in lung tissues of H5N1-infected C57BL/6 mice treated with ifenprodil (no. 42) (A), flavopiridol (no. 67) (B), or vehicle.
Lung tissues were obtained at 3 days after infection, and total RNA was isolated for RNA sequencing. The columns of the heat
maps represent each experimental mouse. The relative expression levels of cytokine mRNAs were normalized by Z-score
transformation. (C) The levels of cytokines and chemokines in plasma from H5N1-infected C57BL/6 mice treated with ifenprodil
(no. 42), flavopiridol (no. 67), or vehicle. Blood samples were obtained at 3 days after infection. *, P � 0.05; **, P � 0.01
(Mann-Whitney U test). GM-CSF, granulocyte-macrophage colony-stimulating factor; TNF-�, tumor necrosis factor alpha; IFN-�,
gamma interferon; RANTES, regulated on activation normally T-cell expressed and secreted; MCP-1, metaphase chromosome
protein 1; MIP-1�, macrophage inflammatory protein 1 alpha.

Two Novel Drugs against H5N1 Virus Infection

November/December 2019 Volume 4 Issue 6 e00431-19 msystems.asm.org 7

 on A
pril 15, 2020 by guest

http://m
system

s.asm
.org/

D
ow

nloaded from
 



A

C

T-1 T-2 T-3 T-4 LN LI LO PF

Ifenprodil (No.42)

Number of objects related to disease(%)

≥40           30          20            10              0

Pathway Rank

Top 1st

Top 10th

Disease Fields

Traditional Indication

Lung Related Disease 

Vascular endothelial cell damage in SLE

Neutrophil-derived granule proteins and cytokines in asthma

NETosis in SLE

PR action in breast cancer: stimulation of cell growth and proliferation

Endothelin-1- and TNF-alpha-induced inflammatory response in asthmatic airway fibroblasts

Renal tubulointerstitial injury in lupus nephritis 

IL-1 signaling in melanoma

Immune response_IL-11 signaling pathway via the MEK/ERK and PI3K/AKT cascades

NF-kB-, AP-1- and MAPK-mediated proinflammatory cytokine production by eosinophils in asthma

Macrophage and dendritic cell phenotype shift in cancer

  T-1    T-2    T-3  T-4/LN   LI     LO    PF

NETosis in SLE

Role of Th17 cells in asthma

Protein folding and maturation_Posttranslational processing of neuroendocrine peptides

G protein-coupled receptor signaling in lung cancer

Gamma-secretase regulation of mammary cell development

NF-kB-, AP-1- and MAPK-mediated proinflammatory cytokine production by eosinophils in asthma

Immune response_IL-11 signaling pathway via the MEK/ERK and PI3K/AKT cascades

Neutrophil-derived granule proteins and cytokines in asthma

Neurophysiological process_visual perception

Skeletal muscle atrophy in COPD

Flavopiridol (No.67)D

B
Ifenprodil (No.42) Flavopiridol (No.67)

Immune response

Neurophysiology process

Immune response Cell development and  differentiation

FIG 4 Functional processes and pathways influenced by ifenprodil and flavopiridol in H5N1-infected mice. (A and B) GO term (biological
process) enrichment of DEGs associated with ifenprodil (no. 42) treatment (A) or flavopiridol (no. 67) treatment (B) in H5N1-infected mice,
as analyzed by Metacore. Enrichment was visualized using the Enrichment Map application in Cytoscape. Biological processes are
presented as nodes, while the node color indicates the significance of the biological processes, and the node size reflects the object count
enriched in the biological processes. The connection between biological processes is based on shared objects. (C and D) Heat maps of the
percentage of objects related to the traditional indication or to lung diseases in the top 10 enriched pathways associated with ifenprodil
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such as NK cells and neutrophils could alleviate influenza A virus-induced ALI (29, 30).
We found that both ifenprodil and flavopiridol significantly decreased the number of
infiltrating cells in H5N1-infected mouse lung tissues. In addition, hypercytokinemia
was reported in the blood samples of patients with lethal avian influenza A virus
infection, and plasma cytokine and chemokine levels were linked to disease fatal
outcomes (31, 32). In our study, both ifenprodil and flavopiridol alleviated cytokine
storm, as they significantly decreased the RNA and protein levels of some cytokines and
chemokines in lung tissues and blood samples from mice with H5N1 virus infection. In
addition, we obtained H5N1-infected mouse lung tissues for RNA sequencing and
conducted bioinformatic analysis, which showed that the genes influenced by ifen-
prodil or flavopiridol administration were highly clustered in GO functional terms and
pathways related to the immune response. From these collective results, we speculated
that the impact of ifenprodil and flavopiridol on the immune response contributes to
the amelioration of H5N1-induced ALI and to improvement in mouse survival. However,
the efficacy of ifenprodil and flavopiridol for the treatment of H5N1-induced ALI also
needs clinical evaluation.

In our study, we evaluated the efficiency in H5N1-infected A549 cells of only 104
commercially available drugs from 372 drug candidates identified using our genome-
wide RNAi screening method; the efficiencies of the rest of the 268 drugs need to be
further tested. Furthermore, we examined the efficiencies of only 10 of the 28 in
vitro-effective drugs in an animal model; the rest of the drug candidates also need to
be tested in vivo.

Our report provides an economical, quick, and highly effective method (compared
with traditional drug development strategies) for identifying novel remedies against
avian influenza virus-induced lung injury. This approach could be generalized for
identifying other contexts in which drugs can be repurposed.

MATERIALS AND METHODS
Cells and virus. A549 human lung adenocarcinoma epithelial cells (ATCC, Rockville, MD, USA) were

maintained in Ham’s F12 nutrient medium (HyClone, Logan, UT, USA) supplemented with 10% fetal
bovine serum (Gibco, Grand Island, NY, USA), 100 U ml�1 penicillin, and 100 U ml�1 streptomycin.
Influenza virus A/Jilin/9/2004 (H5N1) was propagated by inoculation into specific-pathogen-free embry-
onated fowl eggs (10 to 11 days old) via the allantoic route. All in vivo and in vitro experiments involving
live virus were performed in biosafety level 3 facilities.

Genomewide siRNA screen. A genomewide small interfering RNA (siRNA) library targeting 19,424
human genes (with three siRNAs targeting each gene) and negative-control (NC) siRNAs was purchased
from RiboBio (Guangzhou, China). A549 cells were plated into 96-well plates and transfected with siRNA
(100 nM) using Lipofectamine RNAiMAX reagent (Invitrogen, CA, USA). At 24 h after transfection, A549
cells were infected with H5N1 influenza virus (multiplicity of infection [MOI], 3.0) or administered an
equal volume of allantoic fluid (AF). At 48 h after infection, cell viability was measured using the
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H (MTS) assay (catalog no.
G3582, Promega, WI, USA). Cell viability values were normalized by calculating the ratio with respect to
the viability of cells transfected with NC siRNA in the same plates as follows:

normalized cell viability �
siRNAH5N1 ⁄ siRNAAF

NCH5N1 ⁄ NCAF

where siRNAH5N1 represents the H5N1-infected siRNA group, siRNAAF represents the AF-treated siRNA
group, NCH5N1 represents the H5N1-infected NC group, and NCAF represents the AF-treated NC group. A
two-tailed P value of �0.05 was considered statistically significant. Genes associated with normalized cell
viabilities that were increased or decreased by �10% were taken into the second round of screening.
Detailed information about the host genes identified in the genomewide RNAi screen is provided in
Table S1 in the supplemental material.

Gene enrichment and network analyses. The top hits in the siRNA screen were functionally
grouped according to Gene Ontology (GO) terms and functional pathways as clustered by Metacore
(Clarivate Analytics) software. The criteria used to identify “disease-related genes” followed the standards

FIG 4 Legend (Continued)
(no. 42) treatment (C) or flavopiridol (no. 67) treatment (D). LN, lung neoplasms; LI, lung diseases (interstitial); LO, lung diseases
(obstructive); PF, pulmonary fibrosis; T, traditional indication; SLE, systemic lupus erythematosus; NETosis, neutrophil extracellular
trap-associated cell death; PR, progesterone receptor; ERK, extracellular signal-regulated kinase; PI3K, phosphatidylinositol 3-kinase; MAPK,
mitogen-activated protein kinase; COPD, chronic obstructive pulmonary disease. Detailed information about the enriched pathways and
objects is provided in Table S4.
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of Metacore (Clarivate Analytics) software. Cytoscape (version 3.6.1) with the Enrichment Map application
(version 3.1.0) was used for visualization. Interactions among the genes were assessed using the STRING
database (https://string-db.org/).

Drugs. A total of 1,137 genes were searched as drug targets in the DrugBank database (www
.DrugBank.ca/), and 104 drugs were ultimately selected as candidates. All drugs were purchased from
Selleck Chemicals (Houston, TX, USA), and detailed information about the drugs is provided in Table S2.

In vitro experiments. Drugs were added at 1, 10, and 100 �M prophylactically (3 h before infection)
or therapeutically (3 h after infection) to A549 cells infected with H5N1 influenza virus, and cell viabilities
were measured by MTS assay at 48 h after infection. We performed two rounds of screens to confirm
drug efficacy. Drug cytotoxicity was measured by assessing the viability of drug-treated A549 cells that
were not infected with H5N1. Negative-control cultures were treated with dimethyl sulfoxide (DMSO).
Drugs that significantly improved the viability of H5N1-infected A549 cells and that showed low
cytotoxicity in the two screens were considered effective for treating H5N1 infection in vitro. Drug
information and the effective concentrations are listed in Table S3.

In vivo experiments. Wild-type C57BL/6 mice (6 to 8 weeks old; catalog no. 5653791, RRID MGI:
5653791) were purchased from Vital River (Beijing, China) and divided into two groups (5 mice per group)
based on whether drug was administered by intraperitoneal (i.p.) injection or by gavage. A control group
was administered vehicle. Mice were intratracheally instilled with live H5N1 virus (106 50% tissue culture
infectious doses [TCID50]), and they received drug or vehicle at 4 time points: 24 h and 3 h before and
24 h and 48 h after infection. Drug administration methods and concentrations are listed in Table S3.
Mice were sacrificed at 3 days after viral infection, and bilateral lungs were collected to assess lung injury
and pulmonary edema (33). The animal experiments in this work were approved by the Ethics Committee
of the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (ACUC-A02-2017-014)
and adhered to the Chinese National Guidelines for the Care of Laboratory Animals and the Institutional
Animal Care.

Immunofluorescence staining. Lung tissue was fixed with 4% formaldehyde for at least 24 h and
was then embedded in paraffin. Next, antigen retrieval was performed. For immunofluorescence staining,
sections were blocked in 1% bovine serum albumin (BSA) and subsequently incubated overnight with
the following primary antibodies in phosphate-buffered saline (PBS) at the indicated dilutions: anti-CD45
(rat; Abcam), 1:200; anti-CD11b (rabbit; Abclonal), 1:100; anti-ITGAX (CD11c) (rabbit; Abclonal), 1:100;
anti-NCR1 (rabbit; Abclonal), 1:100; anti-CD3e (rabbit; Abclonal), 1:100; antimyeloperoxidase (anti-MPO)
(rabbit; CST), 1:500. Secondary antibodies conjugated to Alexa Fluor 488, Cy3, or 4=,6-diamidino-2-
phenylindole (DAPI) were used at a dilution of 1:200. Whole-section images were scanned with a Nikon
(Tokyo, Japan) Eclipse C1 fluorescence microscope and Nikon DS-U3 imaging system to identify leuko-
cyte subsets.

Measurement of cytokines and chemokines. Three groups of five C57BL/6 mice (6 to 8 weeks old)
were used in this study. Mice were infected with live H5N1 virus (106 TCID50) and administered vehicle,
ifenprodil (20 mg/kg/body weight, intraperitoneally), or flavopiridol (5 mg/kg, intraperitoneally) at 4 time
points: 24 h and 3 h before and 24 h and 48 h after infection. Mouse plasma samples were collected 72 h
after infection. The levels of cytokines and chemokines in the plasma were measured with a Bio-Plex
mouse cytokine 23-plex panel in a Bio-Plex protein array system (Bio-Rad Laboratories).

Measurement of the survival rate and body weight changes. Wild-type C57BL/6 mice were
divided into three groups (9 to 10 mice per group). Mice were administered vehicle, ifenprodil (20 mg/kg,
intraperitoneally), or flavopiridol (5 mg/kg, intraperitoneally) at 24 h and 3 h before and 24 h and 48 h
after infection (106 TCID50 of H5N1 virus). The survival and body weight changes of the mice in each
group were assessed daily for 14 days. The log rank test was used to compare the Kaplan-Meier survival
curves.

RNA sequencing and data analysis. Lung tissue and blood from mice treated with drug or vehicle
were obtained at 3 days after H5N1 infection. Total RNA was isolated from lung tissue and blood using
TRIzol (Invitrogen, CA, USA). High-throughput strand-specific RNA sequencing was performed using an
Illumina HiSeq 2500 platform (Berry Genomics, Beijing, China). Following quality control of the RNA
sequencing reads by FastQC (version 0.11.2), the reads were mapped to the mouse genome (version
mmc10; http://hgdownload.cse.ucsc.edu/downloads.html) with Bowtie2 (version 2.1.0) and TopHat2
(version 2.0.11). We then assembled the transcription units to calculate the number of mapped fragments
per kilobase per million (FPKM) and analyzed the differentially expressed genes (DEGs) between samples
using Cufflinks (version 2.2.1), Cuffmerge (version 2.2.1), and Cuffdiff (version 2.2.1). The functional
pathways of DEGs between animals administered drug or vehicle were analyzed using Metacore.

Statistical analysis. Differences between two groups were assessed for significance using unpaired
t tests or the Mann-Whitney U test. Differences among three or more groups were assessed using analysis
of variance (ANOVA). The log rank test was used for Kaplan-Meier survival analysis. Statistical analysis was
performed using GraphPad Prism 7.0. Differences associated with a two-tailed P value of �0.05 and a
false-discovery-rate value (q value) of �0.05 were considered statistically significant.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00431-19.
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FIG S3, PDF file, 0.3 MB.
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