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INTRODUCTION

The protein eukaryotic translation initiation factor 5A

(eIF-5A) is a highly conserved eukaryotic translation ini-

tiation factor (eIF) found in eukaryotes and archaea.1–3

Biochemical and molecular studies revealed that eIF-5A

is the sole protein that contains a modified amino acid

residue hypusine (Ne-(4-amino-2-hydroxybutyl)lysine).4

The hypusination modification is made by two sequential

reactions catalyzed by deoxyhypusine synthase (EC

1.1.1.249) and deoxyhypusine hydroxylase (EC

1.14.99.29).5–7

eIF-5A was originally purified and identified from

immature red blood cells.8 However, unlike the tradi-

tional translation initiation factors, eIF-5A is not essential

for global protein synthesis8,9 but might be involved in

mRNA translocation across the nuclear envelope.10,11

The hypusinated yeast eIF-5A was recently found to pro-

mote translation elongation.12 Moreover, hypusine of the

yeast eIF-5A has been found to be required for the

sequence-specific interaction with RNA.13 To help clarify

these diverse and even somewhat controversial functions,

seven structures of eIF-5A from various organisms have

been solved (Methanococcus jannaschii, PDB codes: 1eif

and 2eif14; Pyrobaculum aerophilum, PDB code: 1bkb15;

Pyrococcus horikoshii, PDB code: 1iz616; Leishmania bra-

ziliensis, PDB code: 1 3 6o; Leishmania mexicana, PDB

code:1 3 td; Homo sapiens, PDB code: 3cpf; Saccharomy-

ces cerevisiae, PDB code: 3er0). They all share an overall

structure of two domains, both of which resemble the

nucleic acid binding fold.14

The plant Arabidopsis thaliana encodes three isoforms

of eIF-5A: AteIF-5A1, 2, and 3 (GenBank Accession

Numbers AF296082, BE039424, and AV526594). As the

best investigated one, eIF-5A2 has been found to play a

crucial role in plant growth and development by control-

ling cell proliferation and senescence.17 Here, we report

the crystal structure of eIF-5A2 at 2.3 Å resolution,

which represents a novel dimerization pattern specifically

conserved in all plants.

METHODS

Construction, expression, and purification
of eIF-5A

The coding sequence of eIF-5A gene was amplified by

PCR using the cDNA library of A. thaliana as the tem-

plate. An additional sequence coding for a six-histidine

tag was introduced at the 50 end of the gene during PCR

amplification. Then, the PCR product was cloned into a

pET28a-derived vector and expressed at 378C using the

transformed Escherichia coli BL-21 (DE3) strain and 2 3
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YT medium (OXOID LTD.) supplemented with 30 lg/

mL kanamycin. When the cell culture reached an OD600

nm of 0.6, protein expression was induced with 0.2 mM

IPTG (BBI), and the cells were grown for a further 20 h

at 168C. Cells were collected by centrifugation, resus-

pended in 30 mL buffer containing 200 mM NaCl and

20 mM Tris-HCl, pH 7.5. Cells were lysed by three cycles

of freezing/thawing followed by sonication. His-tagged

proteins were purified using a Ni21 affinity column.

Eluted protein was further purified by gel filtration using

a SuperdexTM 75 column (GE Healthcare Bioscience)

equilibrated in 200 mM NaCl, 20 mM b-mercaptoetha-

nol, and 20 mM Tris-HCl, pH 7.5. The purity of the

pooled fractions was checked by SDS-PAGE.

Crystallization, data collection,
and processing

Crystals of eIF-5A2 were obtained by the hanging drop

vapor diffusion method at 168C. In each drop of crystal-

lization, 1 lL protein sample at 10 mg/mL in the buffer

of 20 mM NaCl, 20 mM Tris-HCl, pH 7.5, and 20 mM

b-mercaptoethanol was mixed with 1 lL reservoir solu-

tion (25% ethylene glycol) and equilibrated against 0.5

mL reservoir solution. Typically, crystals appeared in 1–2

days and reached the maximum size of 300 3 400 3

0.05 lm in 1 week. The crystal was flash frozen at 100 K

in a stream of nitrogen gas. Images of diffraction were

collected using a MAR345dtb detector (MarResearch,

Germany), with wavelength of 1.5418 Å and oscillation

of 18. X-ray crystallographic data were processed with

MOSFLM18 and scaled with SCALA.19

Structure solution and refinement

The structure was determined by molecular replace-

ment method with the program PHASER,20 using the

structure of eIF-5A from L. braziliensis (PDB code 1 3

6o) as the search model. The initial model was refined by

using the maximum likelihood method implemented in

REFMAC521 as part of CCP4i22 program suite and

rebuilt interactively by using the rA-weighted electron

density maps with coefficients 2mFo-Fc and mFo-Fc in

the program COOT.23 The final model was validated

with the programs PROCHECK24 and MOLPROBITY.25

Structure factors and coordinates have been deposited in

the Protein Data Bank (PDB http://www.rcsb.org/pdb)

under the accession code of 3HKS. The final statistics

and refinement parameters were listed in Table I. All the

structure figures were prepared using the program PyMol

(http://pymol.sourceforge.net/).26

RESULTS AND DISCUSSION

Overall structure

The crystal structure of eIF-5A2 was refined to the

resolution of 2.3 Å, with two subunits (A and B) in one

asymmetric unit. The majority of residues are well fitted

in the electron density map, except for the N-terminal

His-tag and residues Met1-Ala15 in both subunits, and

the last two residues Gly158 and Lys159 in subunit B.

The side chains of Arg87, Asp106, and Asp135 in subunit

A, and those of His52, Glu132 in subunit B are fitted in

the electron density map at a lower occupancy, using the

program PHOENIX.27 At the surface, six molecules of

ethylene glycol are well fitted in the flat but slightly lon-

ger pieces of electron density [Fig. 1(A)]. The final

refinement and validation statistics are listed in Table I.

The structure of eIF-5A2 comprises two distinct

domains of antiparallel b-sheet that resembles the classic

architecture of eIF-5A [Fig. 1(A)]. The highly conserved

N-terminal domain has an SH3-like barrel motif,16 com-

posed of strands b1–b6 and a 310 helix. Strands b3–b6

forms a distorted semiopen b-barrel. The hypusine mod-

ification site Lys51 is located at the protruding loop

between strands b3 and b4. The C-terminal domain

resembles the oligonucleotide-binding fold (OB fold)30,

and it contains strands b7–b12 and helix a1.

Comparative structural analysis with the DALI server

(http://ekhidna.biocenter.helsinki.fi/dali_server)31 indi-

cates that both the N- and C-terminal domains have the

nucleic acid binding fold as previous reports.14,16 The

Table I
Crystal Parameters, Data Collection and Structure Refinement Statistics

Data processing
Space group P212121
Unit cell (�), (8) a 5 56.56, b 5 79.83, c 5 94.95,

a 5 b 5 g 5 90.00
Resolution range (�) 94.92–2.23 (2.28–2.23)a

Unique reflections 20,393 (1,293)
Completeness (%) 99.5 (96.4)
hI/r(I)i 22.1 (8.1)
Rmerge

b (%) 5.6 (23.9)
Average redundancy 5.7 (5.7)

Refinement statistics
Resolution range (�) 94.92–2.23
R-factorc/R-freed (%) 20.82/24.26
Number of protein atoms 2,358
Number of water atoms 169
RMSDe bond lengths (�) 0.011
RMSD bond angles (8) 1.248
Mean B factors (�2) 22.15

Ramachandran plotf (residues, %)
Most favored (%) 97.41
Additional allowed (%) 2.59
Outliers (%) 0
PDB entry 3HKS

aThe values in parentheses refer to statistics in the highest bin.
bRmerge 5

P
hkl

P
i|Ii(hkl) 2 hI(hkl)i|/

P
hkl

P
iIi(hkl), where Ii(hkl) is the intensity

of an observation and hI(hkl)i is the mean value for its unique reflection; Summa-

tions are over all reflections.
cR-factor 5

P
h|Fo(h)2Fc(h)|/

P
hFo(h), where Fo and Fc are the observed and cal-

culated structure–factor amplitudes, respectively.
dR-free was calculated with 5% of the data excluded from the refinement.
eRoot-mean square-deviation from ideal values.
fCategories were defined by Molprobity.
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recombinant eIF-5A2 overexpressed in Pichia pastoris

with the post-translational modification has a higher

affinity toward nucleic acids compared with the unmodi-

fied one overexpressed in E. coli, as indicated by the

absorbance at 260 nm (data not shown). It is in

agreement with the previous reports that the exposed

positively charged residues, especially the hypusine, can

bind the phosphate backbone of RNA by electrostatic

interactions.32 This positively charged region at the pro-

truding loop of the hypusination site is also present in

eIF-5A2 [Fig. 1(B)].

The novel crystal dimer structure in plants

The homodimerization of eIF-5A has been found in

several organisms. In M. jannaschii IF-5A dimer (PDB

Figure 1
The overall structure and dimerization pattern of A. thaliana eIF-5A2. (A) The overall structure. The conserved residue Lys51 and ethylene glycol

molecules are shown by sticks. The N- and C-terminal domains in subunit A are colored in red and cyan, and subunit B in green, respectively.

(B) Surface representation of electrostatic potential. The surface potential is displayed as a color gradient from red (negative) to blue (positive). The

black arrows point to the possible RNA binding sites. (C) The dimeric interfaces. The hydrogen bonds are shown by dashed lines. (D) Alignment of

eIF-5A sequences. The upper eight sequences are from the plants. Residues Tyr19, Pro20, and Gln21 at the N-terminal interface and Ser107-Thr110

at the C-terminal interface are marked in cyan. All sequences were obtained from NCBI databases. The multialignment was performed using the

programs MultAlin28 and ESPript.29
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code:2eif), the two b3 strands interact with each other

via six hydrogen bonds to form a continuous six-

stranded antiparallel b-sheet, leading to the two active

site loops pointing to the opposite directions.14 In

human eIF-5A dimer (PDB code: 3cpf), the two chains

are linked via a disulfide bond. The dimeric structure of

eIF-5A2 formed between subunits A and B was signifi-

cantly different than those observed in other structures.

The two subunits form a dimer in parallel via an inter-

face of 400 Å2 between the N-terminal domains, and one

of 280 Å2 between the C-terminal domains, respectively

[Fig. 1(A)]. In fact, a small fraction of eIF-5A2 also exists

as homodimer in solution, as detected by gel filtration

(data not shown).

To have a better view, the two interfaces between the

pairs of N- and C-terminal domains are shown in Figure

1(C). The N-terminal interface is stabilized by the

surrounding residues via three hydrogen bonds: Ser22A-N

~ Gln21B-Ne; Gln21A-Ne ~ Pro20B-O; and Pro20A-O ~

Tyr19B-Oe [Fig. 1(C)]. The smaller C-terminal interface

possesses two main chain hydrogen bonds of Ser107A ~

Thr110B and Thr110 ~ ASer107B [Fig. 1(C)].

The structure of eIF-5A2 represents the first structure

of plant eIF-5A, indicating a rather distinct dimerization

pattern from the previous eIF-5A of known structure.

After performing a multiple sequence-alignment by the

programs MultAlin28 and ESPript,29 we noticed that the

residues Tyr19 (substituted by Phe in several cases),

Pro20, and Gln21 are highly conserved in all species of

plant [Fig. 1(D)]. All these three residues are crucial to

stabilize the N-terminal interface [Fig. 1(C)]. The resi-

dues contributing to the C-terminal interface are also

conserved [Fig. 1(D)]. Thus, we proposed that this

dimerization pattern is unique in plants. Further bio-

chemical and biophysical analyses are needed to prove

whether this form of dimer could facilitate the RNA

binding.
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