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Figure 4. The structure of BmSTPR in complex with 18-bp DNA containing four repeats of 5′-atac-3′. (A) Cartoon representation of BmSTPR in complex
with 18-bp DNA. The DNA strands and repeats of BmSTPR adopt the same colour coding as Figure 1C, in addition to R1 coloured in red. (B) Cartoon
representation of the contacts between R1 and corresponding nucleotides in the 18-bp DNA complexed structure. The involved nucleotides and residues
are labelled and shown as sticks. The water molecules are indicated as red spheres and marked with the letter ‘W’. (C) A diagram of the interactions between
BmSTPR and 18-bp DNA.

Figure 5. Multiple-sequence alignment of BmSTPR against its homologs with the programs Cobalt (46) and Espript (47). The secondary structural elements
of BmSTPR are displayed at the top. The three conserved residues such as Glu1, Arg9 and Thr/Ser2 in each repeat are labelled with red stars. The STPR
domains are from the following sequences (NCBI accession numbers in parentheses): B. mori FMBP-1 (NP 001036969.1), H. sapiens Zinc finger protein 821
isoform 2 (NP 060000.1), D. rerio predicted Zinc finger protein 821-like isoform X1 (XP 005169107.1), Drosophila-1 CG14440 isoform A (NP 572343.1),
Drosophila-2 CG14442 isoform A (NP 572342.1), C. elegans protein C05D11.13 (NP 498414.1) and P. patens predicted protein (XP 001767050.1). All
STPRs cover the four repeats from R1 to R4, except Drosophila-2 covers repeats R3–R6.
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Table 2. DNA parameters

DNA segment Pitch Rp Rise Twist x-Disp Roll Incl Groove width (Å) D

(Å) (Å) (Å) (˚) (Å) (˚) (˚) Minor Major (Å)

B-DNA 34.0 9.4 3.3–3.4 36.0 0.10 0.6 2.4 5.7 11.7 3.43
BmSTPR-13 bp 32.3 9.4 ± 0.9 3.23 ± 0.12 36.0 ± 3.9 0.06 ± 1.1 − 2.1 ± 3.7 − 3.1 ± 6.1 5.0 ± 1.2 12.8 ± 1.1 3.58
BmSTPR-18 bp 33.7 9.6 ± 1.0 3.32 ± 0.20 35.5 ± 4.9 − 0.34 ± 1.2 − 0.4 ± 3.8 − 0.6 ± 6.1 5.0 ± 0.8 13.4 ± 1.1 3.58
BmSTPR-20 bp 33.8 9.7 ± 0.8 3.32 ± 0.12 35.3 ± 4.6 − 0.41 ± 0.9 − 1.1 ± 3.4 − 1.8 ± 5.5 4.2 ± 1.1 13.2 ± 0.7 3.84
glucocorticoid-DNA 36.1 10.1 ± 1.4 3.32 ± 0.28 33.1 ± 8.8 − 1.57 ± 1.2 4.5 ± 3.1 8.1 ± 5.7 7.7 ± 0.2 12.9 ± 1.1 2.05
Zif268-DNA 36.8 10.0 ± 0.9 3.29 ± 0.25 32.2 ± 5.4 − 1.57 ± 1.0 4.5 ± 2.7 8.0 ± 4.9 7.6 ± 0.2 11.7 ± 1.5 1.66

The DNA sequences are: BmSTPR-13 bp, 5′-tttacatagattc-3′; BmSTPR-18 bp, 5′-catacatacatacataca-3′; BmSTPR-20 bp, 5′-agtatttacatagattcatc-3′;
glucocorticoid-DNA, 5′-gatgttctg-3′; Zif268-DNA, 5′-gcgtgggcgt-3′. The parameters include the pitch, the radius of the best-fit cylinder through all the
phosphates (Rp), the rise, the twist, the displacement (x-Disp), the roll, the inclination (Incl), the groove width (minor and major) and relative displacement
(D). D is defined as the previous report (40).

base A/T with a G/C that alters the major groove width
resulted in a sharp decrease of BmSTPR binding affinity of
30–60-folds, as seen from the affinity comparison of three
DNA sequences (No.1, No.57 and No.116, Supplementary
Table S3). It indicated that the recognition of BmSTPR to
DNA is a combination of direct and indirect interactions;
however, the main contribution is from the indirect readout.

The DNA geometry in the three complex structures

It was reported that DNA bound to helical proteins in the
major groove adopts a deformed B-DNA conformation, for
example Beg-DNA (where eg stands for enlarged groove)
(40). Using the 3DNA server (http://w3dna.rutgers.edu/)
(41), we performed a DNA geometry analysis of our three
DNA structures through nine major parameters (Table 2).
Upon binding to BmSTPR via the major groove, the three
DNA sequences share a structure of quite similar parame-
ters to each other. However, compared to the canonical B-
DNA (42), the different values in x-displacement, roll an-
gle, inclination degree and groove width indicated that our
three DNA structures adopt a deformed B-DNA conforma-
tion induced by BmSTPR binding (Table 2). Moreover, the
three DNAs exhibit a different structure from the previously
defined Beg-DNA (40), which also binds to helical pro-
teins via the enlarged major groove. Compared to the two
Beg-DNA representatives glucocorticoid-DNA (PDB code:
1R4O) and Zif268-DNA (PDB code: 1ZAA), BmSTPR-
bound DNAs have a negative x-displacement and a negative
inclination degree, indicating a distinct relative position be-
tween base pair and helical axis, in addition to an altered
relative displacement, which corresponds to the spatial re-
lationship between the base pairs and the phosphate back-
bone (Table 2). In addition, our three DNA structures dis-
play an average value of negative roll angle, different from
that for either the canonical B-DNA or Beg-DNA (Table
2). All together, the three BmSTPR-bound DNAs adopt a
unique deformed B-DNA conformation which is distinct
from the previously defined Beg-DNA. Notably, compared
to the 11.7-Å major groove width for canonical B-DNA,
the three BmSTPR-bound DNAs share a rather wider ma-
jor groove of 12.8, 13.4 and 13.2 Å in average, respectively
(Table 2). In fact, the AT-rich sequences usually adopt a nar-
rower minor groove (28,29), in consequence a wider major
groove, as the widths of minor and major grooves are usu-
ally correlated to each other (43). Moreover, comparison

of the key parameters of the BmSTPR-bound DNA struc-
tures with the free AT-rich DNA structures (Table 2 and
Supplementary Table S4) revealed a significant induced fit
upon binding to BmSTPR. Together, we propose that the
high flexibility and intrinsically wider major groove of AT-
rich DNAs contribute to the specific recognition towards
BmSTPR.

STPR-containing proteins are widely spread in animals

Sequence homology search against the NCBI database
(http://blast.ncbi.nih.nlm.gov) (44,45) yielded an output
of 178 STPR-containing proteins of a sequence-identity
higher than 37% with an E-value <80. Similar to BmSTPR,
most STPR domains consist of four repeats. However, there
are a few exceptions that possess three repeats or five
to seven repeats. Interestingly, all STPR-containing pro-
teins are mainly distributed in animals, except for one case
from Physcomitrella patens which possesses five repeats. We
aligned the STPR domains of proteins from the model or-
ganisms including human, Caenorhabditis elegans, Danio
rerio and Drosophila melanogaster, in addition to P. patens.
Each repeat is strictly composed of 23 residues and rich of
basic residues (Figure 5), indicating its DNA-binding ca-
pacity. Moreover, each repeat harbours three highly con-
served residues: Glu1, Arg9 and Thr/Ser2 (Figure 5), which
contribute to stabilizing the �-helical conformation of the
N-terminal moiety of each repeat. Thus, we propose that the
STPR-containing proteins from other organisms might also
be able to wrap the favoured DNA along the major groove
in a somewhat similar pattern. However, these proteins are
usually fused with various domains either at the N- and/or
C-terminus, indicating their diverse physiological functions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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